The electrification of shared mobility has become popular across the globe. Many cities have their new shared e-mobility systems deployed, with continuously expanding coverage from central areas to the city edges. A key challenge in the operation of these systems is fleet rebalancing, i.e., how EVs should be repositioned to better satisfy future demand. This is particularly challenging in the context of expanding systems, because i) the range of the EVs is limited while charging time is typically long, which constrain the viable rebalancing operations; and ii) the EV stations in the system are dynamically changing, i.e., the legitimate targets for rebalancing operations can vary over time. We tackle these challenges by first investigating rich sets of data collected from a real-world shared e-mobility system for one year, analyzing the operation model, usage patterns and expansion dynamics of this new mobility mode. With the learned knowledge we design a high-fidelity simulator, which is able to abstract key operation details of EV sharing at fine granularity. Then we model the rebalancing task for shared e-mobility systems under continuous expansion as a Multi-Agent Reinforcement Learning (MARL) problem, which directly takes the range and charging properties of the EVs into account. We further propose a novel policy optimization approach with action cascading, which is able to cope with the expansion dynamics and solve the formulated MARL. We evaluate the proposed approach extensively, and experimental results show that our approach outperforms the state-of-the-art, offering significant performance gain in both satisfied demand and net revenue.
translated by 谷歌翻译
Vision Transformer(VIT)表明了其比卷积神经网络(CNN)的优势,其能够捕获全球远程依赖性以进行视觉表示学习。除了VIT,对比度学习是最近的另一个流行研究主题。尽管以前的对比学习作品主要基于CNN,但一些最新的研究试图共同对VIT进行建模和对比度学习,以增强自我监督的学习。尽管取得了很大的进步,但这些VIT和对比学习的组合主要集中在实例级对比度上,这些对比度通常忽略了全球聚类结构的对比度,并且缺乏直接学习聚类结果(例如图像)的能力。鉴于这一点,本文提出了一种端到端的深层图像聚类方法,称为对比群(VTCC)的视觉变压器(VTCC),据我们所知,该方法首次统一了变压器和对比度学习的对比度学习。图像聚类任务。具体而言,在微型批次中,在每个图像上执行了两个随机增强,我们利用具有两个重量分担视图的VIT编码器作为学习增强样品的表示形式。为了纠正VIT的潜在不稳定,我们结合了一个卷积茎,该卷积茎使用多个堆叠的小卷积而不是斑块投影层中的大卷积,将每个增强样品分为一系列斑块。通过通过主干学到的表示形式,实例投影仪和群集投影仪将进一步用于实例级对比度学习和全球聚类结构学习。在八个图像数据集上进行的广泛实验证明了VTCC的稳定性(在训练中)和优越性(在聚类性能中)比最先进的。
translated by 谷歌翻译
Graph Neural Networks (GNNs) have been widely applied in the semi-supervised node classification task, where a key point lies in how to sufficiently leverage the limited but valuable label information. Most of the classical GNNs solely use the known labels for computing the classification loss at the output. In recent years, several methods have been designed to additionally utilize the labels at the input. One part of the methods augment the node features via concatenating or adding them with the one-hot encodings of labels, while other methods optimize the graph structure by assuming neighboring nodes tend to have the same label. To bring into full play the rich information of labels, in this paper, we present a label-enhanced learning framework for GNNs, which first models each label as a virtual center for intra-class nodes and then jointly learns the representations of both nodes and labels. Our approach could not only smooth the representations of nodes belonging to the same class, but also explicitly encode the label semantics into the learning process of GNNs. Moreover, a training node selection technique is provided to eliminate the potential label leakage issue and guarantee the model generalization ability. Finally, an adaptive self-training strategy is proposed to iteratively enlarge the training set with more reliable pseudo labels and distinguish the importance of each pseudo-labeled node during the model training process. Experimental results on both real-world and synthetic datasets demonstrate our approach can not only consistently outperform the state-of-the-arts, but also effectively smooth the representations of intra-class nodes.
translated by 谷歌翻译
给定一系列集合,其中每个集合与时间戳关联并包含任意数量的元素,时间集的任务预测旨在预测后续集合中的元素。先前对时间集预测的研究主要通过从自己的序列中学习来捕获每个用户的进化偏好。尽管有见地,但我们认为:1)不同用户序列中潜在的协作信号是必不可少的,但尚未被利用; 2)用户还倾向于显示固定的偏好,而现有方法未能考虑。为此,我们提出了一个集成的学习框架,以对时间集预测的用户的进化和固定偏好进行建模,该预测首先通过按时间顺序排列所有用户群的交互来构建通用序列,然后在每个用户集中学习相互作用。特别是,对于每个用户集的交互,我们首先设计一个进化用户偏好建模组件,以跟踪用户的时间不断发展的偏好,并在不同用户之间利用潜在的协作信号。该组件维护一个存储库来存储相关用户和元素的记忆,并根据当前编码的消息和过去的记忆不断更新其记忆。然后,我们设计了一个固定的用户偏好模型模块,以根据历史序列来发现每个用户的个性化特征,该模块从双重角度自适应地汇总了以前相互作用的元素,并在用户和元素的嵌入方式的指导下。最后,我们开发了一种设定批次算法来提高模型效率,该算法可以提前创建时间一致的批次,并平均实现3.5倍的训练速度。现实世界数据集的实验证明了我们方法的有效性和良好的解释性。
translated by 谷歌翻译
基于神经网络的驾驶规划师在改善自动驾驶的任务绩效方面表现出了巨大的承诺。但是,确保具有基于神经网络的组件的系统的安全性,尤其是在密集且高度交互式的交通环境中,这是至关重要的,但又具有挑战性。在这项工作中,我们为基于神经网络的车道更改提出了一个安全驱动的互动计划框架。为了防止过度保守计划,我们确定周围车辆的驾驶行为并评估其侵略性,然后以互动方式相应地适应了计划的轨迹。如果在预测的最坏情况下,即使存在安全的逃避轨迹,则自我车辆可以继续改变车道;否则,它可以停留在当前的横向位置附近或返回原始车道。我们通过广泛而全面的实验环境以及在自动驾驶汽车公司收集的现实情况下进行了广泛的模拟,定量证明了计划者设计的有效性及其优于基线方法的优势。
translated by 谷歌翻译
随着电子商务行业的爆炸性增长,检测现实世界应用中的在线交易欺诈对电子商务平台的发展越来越重要。用户的顺序行为历史提供有用的信息,以区分从常规支付的欺诈性付款。最近,已经提出了一些方法来解决基于序列的欺诈检测问题。然而,这些方法通常遭受两个问题:预测结果难以解释,并且对行为的内部信息的利用不足。为了解决上述两个问题,我们提出了一个分层可解释的网络(母鸡)来模拟用户的行为序列,这不仅可以提高欺诈检测的性能,还可以使推理过程解释。同时,随着电子商务业务扩展到新域名,例如新的国家或新市场,在欺诈检测系统中建模用户行为的一个主要问题是数据收集的限制,例如,非常少的数据/标签。因此,在本文中,我们进一步提出了一种转移框架来解决跨域欺诈检测问题,其旨在从现有域(源域)的知识传输足够的域(源域),以提高新域中的性能(目标域)。我们所提出的方法是一般的转移框架,不仅可以应用于母鸡而且可以在嵌入和MLP范例中应用各种现有模型。基于90个转移任务实验,我们还表明,我们的转移框架不仅可以促进母鸡的跨域欺诈检测任务,而且对于各种现有模型也是普遍的和可扩展的。
translated by 谷歌翻译
许多真实应用程序的预测任务需要在用户的事件序列中模拟多阶特征交互以获得更好的检测性能。然而,现有的流行解决方案通常遭受两个关键问题:1)仅关注特征交互并无法捕获序列影响;2)仅关注序列信息,但忽略每个事件的内部特征关系,因此无法提取更好的事件表示。在本文中,我们考虑使用用户的事件顺序捕获分层信息的两级结构:1)基于基于事件表示的学习有效特征交互;2)建模用户历史事件的序列表示。工业和公共数据集的实验结果清楚地表明,与最先进的基线相比,我们的模式实现了更好的性能。
translated by 谷歌翻译
本文提出了一种有效的联邦蒸馏学习系统(EFDLS),用于多任务时间序列分类(TSC)。 EFDL由中央服务器和多个移动用户组成,不同的用户可能运行不同的TSC任务。 EFDLS有两种新型组件,即基于特征的学生 - 教师(FBST)框架和基于距离的权重匹配(DBWM)方案。在每个用户中,FBST框架通过知识蒸馏将教师隐藏层的知识转移到学生的隐藏层,与具有相同网络结构的教师和学生。对于每个连接的用户,其学生模型的隐藏层的权重定期上传到EFDLS服务器。 DBWM方案部署在服务器上,具有最小的方距离,用于测量两个给定模型的权重之间的相似性。该方案为每个连接的用户找到合作伙伴,使得用户及其伴侣的权重是上载的所有权重中最接近的权重。服务器交换并将其伙伴的权重发送给这两个用户,然后将所接收的权重加载到其教师隐藏的层。实验结果表明,所提出的EFDLS在一组选择的UCR2018数据集上实现了卓越的性能,这是一个精度的精度。
translated by 谷歌翻译
共享的电子移动服务已被广泛测试和在全球城市中驾驶,并且已经编织成现代城市规划的结构。本文研究了这些系统中的实用而重要的问题:如何在空间和时间跨空间和时间部署和管理其基础架构,以便在可持续的盈利能力的同时对用户无处不在。然而,在现实世界的系统中,评估不同部署策略的性能,然后找到最佳计划是非常昂贵的,因为它通常是不可行的,可以对试用和错误进行许多迭代。我们通过设计高保真仿真环境来解决这一目标,该环境摘要在细粒度下共享电子移动系统的关键操作细节,并使用从现实世界中收集的数据进行校准。这使我们能够尝试任意部署计划来学习在实际在实际系统中实施任何内容之前的特定上下文。特别是,我们提出了一种新的多代理神经检索方法,其中我们设计了一个分层控制器以产生暂定部署计划。然后使用多模拟范例,即并行评估的生成的部署计划进行测试,其中结果用于用深增强学习训练控制器。通过这种闭环,控制器可以被引导以在将来的迭代中产生更好的部署计划的概率。在我们的仿真环境中,已经广泛评估了所提出的方法,实验结果表明它优于基于基于基于基于的基于基于基于的启发式的服务覆盖范围和净收入的方法。
translated by 谷歌翻译
当实体提到可能是不连续的,命名实体识别(ner)仍然挑战。现有方法将识别过程分解为几个顺序步骤。在培训中,他们预测金色中间结果的条件,而推理依赖于前一步的模型输出,这引入了曝光偏差。为了解决这个问题,我们首先构造每个句子的段图,其中每个节点都表示段(其自己的连续实体,或者是不连续实体的一部分),并且边缘链接属于同一实体的两个节点。节点和边缘可以分别在一个阶段中产生网格标记方案,并使用名为MAC的新颖体系结构共同学习。然后,不连续的ner可以被重新重整为发现图中的最大批变并在每个集团中连接跨度的非参数过程。三个基准测试的实验表明,我们的方法优于最先进的(SOTA)结果,在F1上提高了高达3.5个百分点,并在SOTA模型上实现了5倍的加速。
translated by 谷歌翻译